
Tutorial 3

Fundamentals

CS/SWE 4/6TE3, CES 722/723 September 28, 2010

Rate of Convergence

Let α1, α2, ..., αn → α be a convergent sequence, the order of convergence is p∗ if

p∗ = sup
{

p : lim
k→∞

|αk+1 − α|
|αk − α|p < ∞

}

If p∗ = 1, then let

β = lim
k→∞

|αk+1 − α|
|αk − α|

If p∗ = 1 and 0 < β < 1 → linear convergence

If p∗ = 1 and β = 0 → convergence rate is super-linear (fast convergence)

If p∗ = 1 and β = 1 → convergence rate is sub-linear (slow)

If p∗ = 2 → quadratic convergence

To derive the order p∗ of a sequence, we must show that for p < ǫ, the sequence converges to a

finite value, however for p > ǫ, the sequence diverges, hence p∗ is the sup.

Examples

1) Linear convergence: αk = ak where 0 < a < 1 → p = 1 and β = ak+1

(ak)1
= a

As well, lim
k→∞

ak+1

(ak)1+ǫ
= a

akǫ
= ∞ ∀ǫ > 0

2) Quadratic convergence: αk = a(2
k) → p = 2 and lim

k→∞

a(2
k+1)

(a(2
k))2

= a(2
k+1)

a(2
k)2

= 1

And, lim
k→∞

a(2
k+1)

(a(2k))2+ǫ
= 1

(a2k)ǫ
= ∞ ∀ǫ > 0

3) Sub linearly: αk = 1
k → p = 1 and β = 1/(k+1)

(1/k)1 = lim
k→∞

k
k+1 = 1

And, lim
k→∞

1/(k+1)
(1/k)1+ǫ = kkǫ

k+1 = ∞ ∀ǫ > 0

4) Super linearly: αk = (1k)
k → p = 1 and β = lim

k→∞

(

k
k+1

)k(
1

k+1

)

= 0

And, lim
k→∞

(

k
k+1

)k(
1

k+1

)

kkǫ = ∞ ∀ǫ > 0

1

Pattern Search (Hooke and Jeeves)

Pattern Search Overview Given a set of n directions, check forward/backward of the first direc-

tion, if f(yj−1±dj) ≮ f(yj−1) then take the next direction. Continue checking this inequality

for each of the n directions until one is true. After which, if f(yj−1±dj) ≮ f(yj−1) still holds

then shrink the direction, dj = αdj ∀ α ∈ (0, 1). Thus, since we check forward/backward, we

have checked 2n directions. However, if we use the cone direction search, then n+1 directions

is needed and we only need to check n+ 1 directions, which is faster then previous.

The Algorithm

Input:

x0 - given initial point

d1, d2, ..., dn - n linearly independent search directions

0 < α < 1 - damping factor

ǫ > 0 - accuracy parameter

Step 0: k = 0

Step 1: y0 = xk; Call PS

Step 2: If yn = y0 Then (”couldn’t do better so shrink the steps”) dj = αdj ; Go to Step 6

Step 2a: z = yn

Step 3: [We have f(z) < f(xk)]; y0 = yn + (yn − xk); Call PS

Step 4: If f(yn) < f(z) Then z = yn

Step 5: [We have f(z) < f(xk)]; xk+1 = z; k = k + 1

Step 6: If ‖d1‖ < ǫ Stop, Else go to Step 1.

SUBROUTINE (PS): (Pattern search)

For j = 1 : n Do
If f(yj−1 + dj) < f(yj−1) Then yj = yj−1 + dj ;
Else If f(yj−1 − dj) < f(yj−1)
Then yj = yj−1 − dj ;

Else yj = yj−1;
End

Simplex Method (Nelder and Mead)

Sort the points, then take an average. Compare the average with all the other points and try

to remove one, if not, shrink the points by α ∈ (0, 1).

Input:

x0, x1, ..., xn - n+ 1 points in a general position

0 < α < 1 - damping factor

2

0 < β < 1 - contradiction factor

γ > 1 - extension factor

ǫ > 0 - accuracy parameter

Step 0: Sort the points in the order of ascending functional value;

f(x0) ≤ f(x1) ≤ · · · ≤ f(xn)

Step 1: Let

x =
1

n

n−1
∑

j=0

xj; xr = x+ (x− xn);

Step 1a:

If f(xr) < f(x0) ”Better”
Then xe = x+ γ(x− xn) ”Take Better”

If f(xe) ≤ f(xr)
Then DROP xn and ADD xe go to 1.
Else DROP xn and ADD xr go to 1.

Step 1b:

If f(x0) ≤ f(xr) < f(xn−1) ”Better than Second Worst”
Then DROP xn and ADD xr go to 1.

Step 1c:

If f(xn−1) ≤ f(xr) < f(xn) ”Between Second Worst and Worst”
Then xc = x+ β(x− xn)

If f(xc) ≤ f(xn−1)
Then DROP xn and ADD xc go to 1.

Step 1d:

If f(xr) ≥ f(xn)
Then xc = x− β(x− xn)

If f(xc) ≤ f(xn−1)
Then DROP xn and ADD xc go to 1.

Step 2: If max{‖xi − xj‖ : 1 ≤ i, j} < ǫ OR f(xn)− f(x0) < ǫ Then Stop.

Step 3: Contract the simplex to x0; xj = x0 + α(xj − x0), j = 1, 2, ..., n go to 1.

Nedler-Mead Example

Example for the banana function:

f(x1, x2) = 100(x2 − x21)
2 + (1− x1)

2

α = 1/2 damping factor

β = 2/3 contraction factor

3

γ = 2 extension factor

x0 = (3, 3); x1 = (1, 2); x2 = (2, 1);

Iteration one:

Step 1: Sort the points in the order of ascending function value:

f(x0) = f(1, 2) = 100 ≤ f(x1) = f(2, 1) = 901 ≤ f(x2) = f(3, 3) = 3604

Step 2:

x̄ =
1

2

1
∑

j=0

xj = (1.5, 1.5); xr = x̄+ (x̄− x2) = (0, 0)

Step 2a:

f(xr) = f(0, 0) = 1 < f(x0) = f(1, 2) = 100 ⇒ xe = x̄+ γ(x̄− x2) = (−1.5,−1.5)

f(xe) = f(−1.5,−1.5) = 1412.5 > f(xr) = f(0, 0) = 1 ⇒

DROP x2, ADD xr = (0, 0), GOTO 1

Iteration two:

Step 1: Sort the points in the order of ascending function value:

f(x0) = f(0, 0) = 1 ≤ f(x1) = f(1, 2) = 100 ≤ f(x2) = f(2, 1) = 901

Step 2:

x̄ =
1

2

1
∑

j=0

xj = (0.5, 1); xr = x̄+ (x̄− x2) = (−1, 1)

Step 2b:

f(x0) = f(0, 0) = 1 ≤ f(xr) = f(−1, 1) = 4 ≤ f(x1) = f(1, 2) = 100 ⇒

DROP x2, ADD xr = (−1, 1), GOTO 1

Iteration three:

Step 1: Sort the points in the order of ascending function value:

f(x0) = f(0, 0) = 1 ≤ f(x1) = f(−1, 1) = 4 ≤ f(x2) = f(1, 2) = 100

Step 2:

x̄ =
1

2

1
∑

j=0

xj = (−0.5, 0.5); xr = x̄+ (x̄− x2) = (−2,−1)

Step 2d:

f(xr) = f(−2,−1) = 2509 ≥ f(x2) = f(1, 2) = 100 ⇒ xc = x̄− β(x̄− x2) = (0.5, 1.5)

f(xc) = f(0.5, 1.5) = 156.5 > f(x1) = f(−1, 1) = 4 ⇒ GOTO 3,4

4

Step 4: Contract the simplex to x0:

xj = x0 + α(xj − x0), j = 1, 2

x1 = x0 + α(x1 − x0) = (−0.5, 0.5) x2 = x0 + α(x2 − x0) = (0.5, 1), GOTO 1

Iteration four:

Step 1: Sort the points in the order of ascending function value:

f(x0) = f(0, 0) = 1 ≤ f(x1) = f(−0.5, 0.5) = 8.5 ≤ f(x2) = f(0.5, 1) = 56.5

Step 2:

x̄ =
1

2

1
∑

j=0

xj = (−0.25, 0.25); xr = x̄+ (x̄− x2) = (−1,−0.5)

Step 2d:

f(xr) = f(−1,−0.5) = 229 ≥ f(x2) = f(0.5, 1) = 56.6 ⇒ xc = x̄− β(x̄− x2) = (0.25, 0.75)

f(xc) = f(0.25, 0.75) = 47.8 > f(x1) = f(−0.5, 0.5) = 8.5 ⇒ GOTO 3

Step 3: The Nedler-Mead Simplex method produced the following results after 4 iterations: x0 =

(0, 0); f(x0) = 1.

Step 4: Contract the simplex to x0:

xj = x0 + α(xj − x0), j = 1, 2

x1 = x0 + α(x1 − x0) = (−0.25, 0.25) x2 = x0 + α(x2 − x0) = (0.25, 0.5), GOTO 1

Iteration five: ...

Golden Section Line Search

Finding a minimum of f → min f(x)

Unimodal Function

A univariate function is unimodal in [a, b] if there exists a unique x∗ ∈ [a, b] such that for any

x1, x2 ∈ [a, b] where, x1 < x2

If x2 < x∗, then f(x1) > f(x2) (slope down)

If x1 > x∗, then f(x2) > f(x1) (slope up) .

We can then reduce the interval of a unimodal function,

If f(x1) < f(x2) → [a, x2]

If f(x2) < f(x1) → [x1, b]

If f(x1) = f(x2) → [x1, x2] .

5

Golden Section Search

Gold Ratio: Given a rectangle with sides 1 and φ, φ is defined such that partitioning the original

rectangle into a square and new rectangle results in a new rectangle having sides with a ratio 1, φ.

Such a rectangle is called a golden rectangle and we have,

1

φ− 1
= φ → φ2 − φ− 1 = 0

φ =
1±

√
5

2
≈ −0.618033, 1.618033 .

We can use this approach for minimization, where we take x1, x2 ∈ [0, 1] and a decreasing ratio τ

such that we let x1 = 1 − τ, x2 = τ . Assuming [0, τ] is our new interval, x1 = 1 − τ ∈ [0, τ] and

the decreasing rate for the next interval
(

1−τ
τ

)

should be equal to the first τ .

τ2 + τ − 1 = 0 → τ =
−1±

√
5

2
≈ 0.618033,−1.618033 .

The Golden Section Search takes τ ≈ 0.618, where for an interval [a, b],

x1 = a+ (1− τ)(b− a)

x2 = a+ τ(b− a) .

The method used to reduce the interval of a unimodal function can then be applied to find an

approximation of a minimum. Here we need 4 points at the beginning to find the minimum of a

function. Note that when we generate new points we keep the same ratio between them.

6

